
Shibboleth:

Private Mailing List Manager

Matt Curtin
Interhack Posse

http://www.interhack.net/people/cmcurtin/

February 9, 2000

Abstract

We describe Shibboleth, a program to manage pri-
vate Internet mailing lists. Differing from other
mailing list managers, Shibboleth manages lists or
groups of lists which are closed, or have member-
ship by invitation only. So instead of focusing on
automating the processes of subscribing and un-
subscribing readers, we include features like SMTP
forgery detection, prevention of outsiders’ ability
to harvest usable email addresses from mailing list
archives, and support for cryptographic strength
user authentication and nonrepudiation.

1 Introduction

Then Jephthah gathered together all the
men of Gilead, and fought with Ephraim:
and the men of Gilead smote Ephraim, be-
cause they said, Ye Gileadites are fugitives
of Ephraim among the Ephraimites, and
among the Manassites. And the Gilea-
dites took the passages of Jordan before
the Ephraimites: and it was so, that
when those Ephraimites which were es-
caped said, Let me go over; that the men
of Gilead said unto him, Art thou an
Ephraimite? If he said, Nay; Then said
they unto him, Say now Shibboleth: and
he said Sibboleth: for he could not frame
to pronounce it right. Then they took
him, and slew him at the passages of Jor-
dan: and there fell at that time of the
Ephraimites forty and two thousand.

Judges 12:4–6, KJV

Shibboleth was conceived in early 1995, as a system
that would allow a group of people to communicate
freely with one another, without concern about out-
siders being able to infiltrate the group or to address
the group by impersonating one of its members. At
the time, widely-available mailing list software had
no means of effectively addressing these security and
privacy requirements.

Since that time, the Internet has seen explosive
growth, which has unfortunately increased signifi-
cantly the number of unscrupulous and greedy mar-
keters among us online. These have devised many
avenues of finding people, arguably invading their
privacy “to market to them more effectively”, and
engaging in abusive practices like spamming. [14, 9]
On today’s Internet, it is difficult to participate in
a forum of any type—even “private” ones—without
being exposed to the risk of making oneself known
to the outside world and having one’s address pub-
lished for all to see and to abuse.

Shibboleth has managed to avoid falling victim to
the abusive behavior that is sadly becoming increas-
ingly popular on the Internet today.

1.1 Terminology

It will be easy to get lost in these interactions unless
we explicitly state exactly what we mean by the
these terms.

Family A group of mailing lists on the same ma-
chine, managed by the same installation of
Shibboleth.

List A specific mailing list.
1



Moderator Human who approves messages and
manages elements of a list. Each list can have
a single moderator or a set of moderators. A
moderator can be a moderator for several lists.

Administrator A human who deals with irregu-
larities, such indications of mail forgery and
digital signature failures. Additionally, admin-
istrators are responsible for the management of
the Shibboleth installation as a whole, global
configuration options, etc.

Hosts A group responsible for the operation of the
family of lists. Typically, this is the moderators
and administrators as a single group.

Outsider A network user who has no association
with the family of lists in the particular Shib-
boleth installation.

Insider A user who does have association with this
particular family of lists; someone with a profile
in the members database.

Subscriber A particular type of insider: one who
is subscribed to a particular list.

Nym The name by which an insider is known.
This might be some construction of the insider’s
name (like “first last”), or it could be a handle
by which he is known.

1.2 Differentiating Ourselves

It is important to note that Shibboleth is vastly dif-
ferent from most mailing list managers because most
are designed to take care of routine issues of sub-
scriptions, our software makes no attempt to auto-
mate this process to the same degree. Subscriptions
are by invitation only. That is, the hosts initiate
the subscription process by sending an invitation.
If the user accepts, a profile is created, and he is
welcomed to the family of lists.

2 High-Level Design

Before construction began, we wrote about the sys-
tem’s design goals and requirements.

2.1 List Structure

Shibboleth thinks of lists in groups, which we call
families. If a group of security folks wants to work
together, it can do so by defining a “family” which
might be called “White Hats”. When we refer to a
White Hats member, we mean only that Shibboleth
has a profile for that user in its member database.
That name is typically the basis of deciding what
prefix to use to reference the family of lists as a
whole. In this example, we’ll use “WH”.

Within each family is any number of lists which be-
long to that family. The only lists that Shibboleth
expects to find by default are

• an “-all” list (which includes everyone in the
database) and

• a list for the list’s hosts, those responsible for
the operation of the lists.

Any number of other lists can be created. Their
names consist of the prefix (“WH” in our example)
and its separator (“-” in our example) followed by
a keyword to identify the list. A WH list to discuss
projects might be “wh-projects”, another to handle
otherwise off-topic traffic might be “wh-chat”.

Each list has its own privacy level. That is, some
lists can be available for anyone associated with that
list’s family. Others can require approval from a
moderator. Thus, if there’s a topic that would not
be open for all WH members, it can be discussed on
a list marked “private”. Members may only retrieve
archival postings from non-private lists, or private
lists to which they are currently subscribed.

In no case is combination of insiders and outsiders
on the distribution supported. Shibboleth will trig-
ger an error for such messages, requiring adminis-
trator approval.

2.2 Design Goals

High-level goals for the system include

Members-Only Access Only insiders can send
mail through the relay to any of the family’s
lists or other insiders.



Resistant to Forgery The system should be re-
sistant to SMTP [12] mail forgeries [16]. Some
basic header checking should be done. Addi-
tionally, the system should be able to verify and
to generate digital signatures in order to make
the possibility of convincing forgeries computa-
tionally infeasible.

Configurable Access Each member of the list
will have an “access level” associated with his
account. These are:

Admin List owner; can do anything.

User Regular list member. Can read and post
messages without special restrictions.

Novice List member, but read-only. (Novices
may submit articles, but they must be ap-
proved by a moderator, irrespective of the
list’s configuration.)

Timeliness Users should not have to wait “long
periods of time” for processing of their mail.

Minimal Overhead The administrative burden
must be reasonably manageable.

• Day-to-day tasks pursuant to the opera-
tion of of the mailing list should be mini-
mal. It shouldn’t require a lot of time to
manage a mailing list.

• Processing of the list should not be so ex-
pensive that it bogs down the machine
running the system.

• A simple-as-possible configuration file
should exist which would allow configura-
tion changes to be made easily either man-
ually or by some mechanism in the soft-
ware itself.

Usefulness The system needs to provide general
utility that would be expected from a mailing
list package, including

• Ease of use: the learning curve for users
should be gentle;

• Archival of old messages;

• Digest creation: send digests to those who
want to receive only specified articles from
the archive;

• File server: a means for files of interest to
the user community to be sent via email.

2.3 System Requirements

Specific system requirements. Features of this sec-
tion indicate the feature must be part of the original
implementation. Features which can be added in a
subsequent version of the software are listed in the
next section.

2.3.1 Moderation

A list of moderators is assigned for each list man-
aged by the software. Every time a message requir-
ing moderator intervention is processed, one copy
of the message is sent to each address in the list of
moderators.

This design is suboptimal. We have found that it
can work in cases where there are few moderators
and they have some agreement whereby they can
decide who will process which messages. Neverthe-
less, this is relatively cumbersome, and would best
be replaced by a mechanism to allow a moderator
to fetch a number of messages in the queue, or to
inquire as to the number of messages in the queue.

Each list can be configured for one of several mod-
eration modes.

Unmoderated Moderate nothing: let all messages
pass;

Moderate new threads Require moderator ap-
proval for only the first message in any thread;

Taboos Moderate messages having a header
matching a given pattern;

Unproven Require moderator approval, except for
messages whose authors have been “proven” us-
ing an authentication mechanism;

Fully Moderated Require moderator approval
for everything.

“Taboos” is actually a special case: one can, for
example, employ both “moderate new threads” and
“taboos”. If any taboo patterns are specified, they’ll
be used. Any Subjects matching one of the taboo
patterns will trigger the moderation rule, irrespec-
tive of any other moderation configurations for that
list.



2.3.2 Sender verification

Each member of the list has a list of patterns used
to identify his known addresses. When a message
arrives, the From header is compared to patterns in
the profiles in the database so that the user who
sent the message can be identified.

If a message comes from an unknown address, it can
be spooled for a moderator to approve or to reject
the message. Additionally, in order to prevent an
outsider who mailed an inside from getting the idea
that the address he used is valid, a “user unknown”
bounce message is sent.

As part of the verification process, the Received
and Message-Id SMTP headers [5] are examined to
decrease the possibility of forging a message that ap-
pears to come from a known (legitimate) user. If a
forgery is suspected, the system spools the message
for an administrator to peruse. In practice, this rule
is most often triggered by administrative changes in
the user’s Internet Service Provider (ISP), such as
the addition of previously unknown mail relays, or
changes in the user’s behavior, such as the use of
a new ISP for IP connectivity without changes in
the user’s email address. (As an example, someone
might have an “address for life” from a university
and always use that. As far as anyone who sees only
From and Reply-To headers is concerned, there is no
change when such a person switches ISPs. However,
someone looking at Received headers will be able
to identify that mail is definitely coming from a dif-
ferent source when such a person changes ISPs. The
administrator simply replies to the Shibboleth bot’s
mail, updating the profile to include the new relay,
or a new pattern that will cover the relay.

The optional X-Password field is used as an addi-
tional means of convincing the system of the mes-
sage’s authenticity. Thus, if the X-Password’s value
matches the user’s password in his profile, SMTP
header errors are ignored.

2.3.3 Address Standardization or Shadow-
ing

Each user should have a standardized address, in
the form of “prefix-nym”. Some might want their
nyms to be their first and last name. Others might
like their nyms to be some sort of unique token.
The prefix should make it clear that the intended

target is a Shibboleth user. A private installation
called “white hats” might have a prefix of “wh”,
thus if Matt Curtin is a member of “white hats”,
his address to other “white hats” members would
be wh-matt curtin@example.com.

This serves two purposes.

• Insiders can easily mail each other by knowing
only the first and last names (or the nym) of
their addressee.

• All mail sent this way is protected from forg-
eries, mail from outsiders, etc., just as mail
sent to a list is. Hence, snoops seeing mail in
transit from the list to its recipients will not
be able to gather email addresses to target for
mailings, etc. For this to work effectively, it
is necessary to ensure that headers from the
original message are not passed through the
system, especially Received, Message-Id, X-*,
and Reply-To.

It should be noted that mail from an insider to the
system can still be snooped. The effects of gather-
ing addresses this way is far smaller than from the
system to the list members.

2.3.4 Header Canonicalization

All mail from the system has a consistent From
header format, which easily identifies the kind of
mail that’s been sent to the user by Shibboleth. For
example:

. . Matt Curtin mail from Matt Curtin to a Shib-
boleth mailing list.

.ˆ. Matt Curtin Mail from Matt Curtin to you
via Shibboleth.

.#. Matt Curtin Mail from Matt Curtin to the
mailing list for list managers.

.!. List Managers Mail from the List Managers
via the “-all” list (the broadcast channel).

This format makes it possible to score articles easily
in software in addition to identify visually why the
article was received.



2.3.5 Archives

Insider-only retrieval of messages posted to a given
list. Further, although “public” lists—those avail-
able to any insider—will be retrievable by all insid-
ers, only subscribers of a private list can retrieve
messages from that list’s archive.

2.3.6 Portability

Should run unmodified on any Unix machine where
Perl 5.004 can be found. In theory, it would take
very little work for the system to run under alien
systems like Windows NT and MacOS, provided
that the local Mail Transfer Agent (MTA) has some
means of running a process as a given user.

2.3.7 Logging

The complete and unmodified headers of each mes-
sage are logged. This was implemented to aid in
determining precisely which headers triggered par-
ticular rules and whatnot after the fact. At run-
time, if an error is reported, the header(s) causing
the error are included, but we thought there might
be some value in being able to examine the head-
ers after the fact, or to be able to examine the data
for patterns over a period of time, etc. This is also
consistent with the belief that where security is a
concern, it is better not to need what one has than
not to have what one needs.

2.3.8 White Pages

This feature allows each user to have a bit of text
that would be intended as a biographical sketch
available to other insiders. Even among insiders, in-
dividual users have control over who sees their white
pages entries, by providing their preferred means of
handling requests to see their white pages entries.
Available options are:

Deny Do not let anyone (but administrators) re-
trieve the entry.

Ask Respond to each attempt to see the white
pages entry by mailing the entry’s owner and
asking for approval. If the owner approves

the request (by replying to the request with a
“yes”), forward the entry to the requester. Re-
fusals (made by replying to the request with a
“no”) result in the requester being told that the
request has been denied by the entry’s owner. If
no answer is received in a configurable amount
of time, the requester is told that the request
has expired without a response from the entry’s
owner.

Allow Let anyone who is a subscriber of the list
view the entry.

2.3.9 Remote Administration

While the software should be able to be adminis-
tered directly from the machine where it’s running,
a set of commands should be available to the ad-
ministrators, to allow them to administer the list
without having to login to the machine running the
software. Additionally, if there are changes that
need to be made on more than one machine, the
software should accept the command, and then sync
the other systems to ensure that all systems are con-
figured to agree with each other.

Because the nature of Internet email, and the poten-
tial effects of accepting commands from attackers,
the software does not execute commands unless it
can be proven that they originated from an adminis-
trator. For this purpose, a valid PGP digital signa-
ture is required. Recently, we have added the ability
for administrators and moderators to authenticate
themselves via the use of the X-Password header
mechanism. We don’t recommend use of this mech-
anism; if it’s at all possible, use PGP.

2.3.10 File serving

Having files (such as system documentation, or
other files of interest) available for insiders can be
useful. Making them available via HTTP [6, 2] or
FTP [13] could be problematic, as these are not
subject to the same sorts of authentication mech-
anisms that exist in Shibboleth. Making Shibboleth
do this itself has been most useful; requests are sent
to Shibboleth as are any other requests and responses
are sent via email, with the requested files sent as
MIME [7] attachments.



2.3.11 PGP Signature Generation

Each list has the option of having all of its traffic
PGP signed [1]. That is, before Shibboleth sends
a message, it PGP signs the message with its own
key. This is an important option: all of the header
checking in the world won’t do us any good if a
user can be fooled by a simple forgery that never
went through the Shibboleth server. By enabling
the option to have all messages PGP signed, such
forgeries wouldn’t be possible to perpetrate in a way
that would fool most of the users. They’d want to
know where the signature is, or why the signature
doesn’t verify properly.

2.3.12 Additional Sender Verification

In addition to SMTP header checks and the use of
the X-Password header, Shibboleth supports PGP.
A message signed with PGP will be verified on the
basis of the signature’s correctness. SMTP header
checks will not be performed.

2.4 Additional Features

These are features that we should have, but have
not yet implemented.

2.4.1 Peer support

Because of the processing requirements of the sys-
tem, it is desirable to have the ability to share the
load among several machines. Perhaps one ma-
chine can receive incoming mail and handles ver-
ification, while another machine receives the mail
from the first machine and handles subsequent pro-
cessing. Once a more final version of the features
are available, we’ll describe each of the parts’ in-
terfaces, which will show where load can be split
among machines.

2.4.2 Configurable Load

The software should be configurable to be a system
pig (i.e., handle redundant tasks with parallel pro-
cesses or threads) or to be nice (process everything
sequentially; don’t take up extra cycles.)

2.4.3 Digest Generation

Shibboleth’s digest is different from most systems’
digest. A digest can be retrieved by any user and
an index of all of the articles which have been posted
to the specified list will be returned. The user then
chooses which articles he wants by quoting the lines
containing the articles he wants to read and sending
that mail back to the digester. The digester then
sends those articles to the requester, separately.

Something we’re considering is the ability for users
to receive mail in batches, perhaps through some
sort of digest capability as described in RFC
1153 [18].

3 Implementation

We’ll limit our focus on implementation details that
we believe to be the most relevant to our goals of pri-
vacy and security, particularly where we do things
that aren’t known to be done by other mailing list
managers.

3.1 Language

Perl was chosen as the implementation language be-
cause it satisfied some important criteria for our ap-
plication.

Portability Well-written Perl code will run un-
changed on essentially any Unix implementa-
tion, and even on non-Unix platforms.

Safety Perl frees the programmer from dealing
with the sort of problems that are unrelated to
the project at hand and historically the most
problematic, including management of mem-
ory and of fixed-lengths buffers. Additionally,
Perl’s taint-checking allows us to run Shibbo-
leth without worrying about the likelihood of
unverified user data being handled unsafely.

Rich Library Perl has a rich library of modules
that allow us to work with simple interfaces to
protocols and systems we’ll be using.

Pattern Matching Perl’s sophisticated pattern-
matching capabilities are well-suited to the sort
of analysis of text data that we do.



3.2 Sender Verification

Erring on the side of paranoia, we begin with the as-
sumption that a message is from an outsider. We’ll
consider the verification process first and then con-
sider the noteworthy parts in more detail.

1. If a digital signature is present it is evaluated.

(a) If the digital signature is good, the
sender’s identity is accepted without need
for further verification.

(b) If the digital signature is bad, the mes-
sage is sent to the administrator for re-
view, with the note that the digital signa-
ture failed.

2. If the user can be identified, his nym is associ-
ated with the message. Otherwise, the message
is sent to the administrator for review with the
note that the sender could not be identified as
an insider and a “user unknown” bounce is re-
turned to the sender.

3. The Received and Message-ID headers in the
message are examined. If any hosts which are
not in the user’s profile were involved in sending
the message, the message is sent to the admin-
istrator for review, with the note that a header
didn’t match the user’s profile.

4. If the user’s profile contains a password, the
message is checked for the presence and cor-
rectness of an X-Password header.

3.3 Getting Mail to Shibboleth

Mailing lists typically require a few aliases to en-
sure that mail directed to the list’s address will
be delivered properly, as well as such variations as
listname-owner. Because we need Shibboleth to
process not only things directed specifically to it or
to any of its lists, but also to any other insider, we
would require a larger number of aliases.

Shibboleth has the support necessary to generate
and to maintain a seperate MTA alias file.

We actually favor a newfangled option1 to all of this
alias maintenance. Most MTAs support a feature

1This options is not fully implemented.

for aliasing multiple addresses to a single mailbox.
For example, in recent versions of Sendmail, mail
addressed to user, user+foo, and user+bar all get
delivered to the same place. A Usenet FAQ de-
scribes how to do this in detail. [11]. By using this
feature, a site can create a user with a prefix that
will be used for all of the family’s lists. Then, ad-
dresses will be user+list or user+nym. Shibboleth
will generate bounces for anything that doesn’t ex-
ist. By having mail go to a user account, we can
also place the burden of managing ID of the user
running the process on the MTA: rather than hav-
ing to write our own setuid front-end for Shibboleth,
the MTA will perform the setuid for us. This saves
us some headaches in permissions related to aliases
and other files we need to access. It’s also much
more easy for us to run from a single unprivileged
account this way, making all of our database files,
archives, etc., unreadable to all other system users.

3.3.1 Identifying the User

Each user’s profile, as is shown in Figure 1 con-
tains a list of Perl patterns; an address that matches
the pattern is associated with the user. This allows
users to send mail from any of their accounts, with-
out revealing how many such accounts they have,
or even giving anyone any idea that they have more
than one. This is a convenience issue, as mailing
lists that accept mail only from subscribers are typ-
ically less intelligent and require that one send mail
from the exact address that one uses to subscribe
to the list. For those who do a lot of contract work
(thus changing daytime address often), those who
send mail from both home and work, or those who
use more than one machine, our solution is much
more workable.

Headers that we examine for this case are the SMTP
envelope’s From (sometimes called From because
MTAs have historically stored the value in a From
header without a separating colon, but instead fol-
lowed by a space and a timestamp) and the mes-
sage’s From header.

3.3.2 SMTP Header Checking

In an effort to prevent outsiders from being able
to send mail by impersonating an insider and to
prevent insiders from impersonating each other by
means of trivial SMTP forgery, we examine each



wh-matt_curtin is Matt Curtin

Destination Email: cmcurtin@interhack.net
Valid addresses: cmcurtin@interhack\.net

cmcurtin@\w+\.interhack\.net
cmcurtin@cis\.ohio-state\.edu

MX servers: \w+\.interhack\.net
\w+\.cis\.ohio-state\.edu

X-Password:
White page access: allow
PGP key ID: BF7F7CCD
User is:
User subscribed: wh-hosts, wh-all,

wh-chat, wh-security
User is admin in: wh-all
User is moderator in: wh-all

Figure 1: Typical User Profile

of the headers put in place by mail relays used to
deliver the message as well as the “domain part”
(right side; that which follows @) of the Message-ID.

Again, each insider’s profile contains a list of Perl
patterns used to identify known SMTP relays. If
any relay does not match one of the patterns in the
profile, an error is signaled.

For convenience, administrators can specify “clus-
ters”, a token that will be associated with a
list of patterns. So, for example, if an instal-
lation has some number of insiders who are all
AOL subscribers, each can have the *aol* clus-
ter in his profile, and then the *aol* cluster can
be made to recognize hosts that fit the pattern
\S+\.(mx|mail)\.aol\.com and mrin[0-9]+.

3.3.3 X-Password

We recognize that PGP—our preference for
authentication—is not available to all. Nontechnical
members on less capable platforms might especially
have difficulty using PGP correctly and finding tools
that allow them to use it conveniently. Lastly and
ironically, there are companies whose security orga-
nizations have banned the use of PGP.

To provide an option for additional authentication
for those who have no capability to PGP, Shibbo-
leth supports a user-defined header that contains a
password. This isn’t considered a “high-security”

option, as it’s susceptible to replay attacks [8], just
as is any reusable-password authentication scheme
whose credentials are sent in cleartext..

3.4 Address Standardization

Several benefits are realized by the address stan-
dardization feature. A common problem with mail-
ing lists is that responses to messages sent to mail-
ing lists will have both the mailing list itself and
the author of the message that prompted a response
included on the copy-to list, resulting in some sub-
scribers receiving several copies of messages in re-
sponse to theirs or of messages even further down
the thread.

Implementation of the address standardization
mechanism requires that all messages—both insider-
to-insider and insider-to-list—be processed by Shib-
boleth. As such, we can prevent subscribers from
receiving multiple copies of the same message, even
if the author specifies a specific user’s address and
a list to which he subscribes.

Sometimes, a Shibboleth user’s shadowed address
will fall into the hands out outsiders, either by way
of oversight, perhaps a careless person forwarding
the mail to outsiders without removing such head-
ers, or intentionally. Perhaps a subscriber has been
ejected for some reason and has saved addresses of
other insiders.

An outsider sending a message to an insider or ad-
dress one of the Shibboleth lists will receive a “user
unknown” bounce. A copy of the message will also
be sent to the list administrators. This has proven
an effective means of preventing unwanted traffic
from finding its way to insiders. Never has unso-
licited bulk email (“spam”) ever made it to a sub-
scriber, though some of our addresses appear to have
been sold as part of at least one spam software pack-
age; the administrators got copies of the spam, as
they would any message from an apparent outsider,
but the insiders had no idea that the spam was ever
directed their way. Individuals who unscrupulously
add others to their lists without confirmation occa-
sionally add an insider’s shadowed address. After
receiving the bounce, the list operator will typically
remove the insider’s shadowed address. (If not, he’ll
just keep getting bounces!)

If an insider sends mail that includes outsiders, the



message goes to an administrator for handling. If
the administrator approves the message, Shibboleth
will remove the outsiders’ addresses, thus preventing
any replies from insiders also being directed to out-
siders. Replies from outsiders that include insider
addresses will, of course, bounce.

3.5 Cryptographic Strength Modera-
tion

A potential weakness for any moderation scheme
is the authentication mechanism used for the mod-
erators to identify themselves and the messages
that they approve. As Shibboleth is fully inte-
grated with PGP (albeit “classic” IDEA/RSA/MD5
PGP 2.6.x), we can easily require cryptographic
strength moderation. Thus, defeating the modera-
tion scheme would require a crack of a moderator’s
key, or the ability to forge an MD5 hashed signa-
ture, both of which are currently computationally
infeasible.

Administrative functions also require the same level
of authentication.2

Messages to be moderated appear to be be bounces
to most mail user agents (MUA). MUAs that sup-
port a feature like “retry bounce”, such as Kyle
Jones’s excellent VM for XEmacs and GNU Emacs,
will work best, as the submissions can be read from
the moderation queue, brought into a composition
buffer, PGP signed, and then sent on their way.

Shibboleth, upon seeing that the message has a valid
PGP signature belonging to a moderator, will send
the message on its way. It is noteworthy that only
the part of the message that was signed will be
passed. Anything outside of the delimiters for the
signed message will not be included; neither will the
PGP signature itself.

Because we use a version of PGP which is not
MIME-aware, PGP does not interfere with any of
the MIMEisms that are in the original message. Its
Content-type header is left unchanged, and the sig-
nature engulfs the entire message body, including all
attachment data. Thus, when Shibboleth verifies the
signature, it is verifying not only the content of the

2Again, we recently added the ability to allow the simple
X-Password header authentication for moderators and admin-
istrators. This isn’t something we recommend that adminis-
trators enable, but provide it as a means of authentication
where PGP isn’t an option.

message, but also of all of the attachments. Any
changes to the attachments in transit (such as, for
example, the addition of a virus-infected file) would
cause the signature to fail, causing the attempted
approval message to go to the administrator for re-
view.

3.6 Load Sharing

Instead of requiring that all processing and all out-
bound messages be sent via the same host, Shibbo-
leth provides the ability to direct its outbound mail
to a third party.3 This allows the system running
Shibboleth to share the burden of running the list:
one machine can receive all of the incoming mes-
sages and handle that processing; another can be
used to send all of the outbound messages.

Other features that would enable a more granular
level of load sharing have been planned.

3.7 Outgoing Messages

To prevent the leakage of header data that could
provide information about a poster’s address, Shib-
boleth does not simply forward the message to the
apporpriate users. We actually create a new mes-
sage altogether. Shibboleth’s configuration contains
a list of Perl patterns whose headers should be
preserved. This allows us to include things like
Subject, without having to worry about what data
might bleed in other headers.

Outgoing messages have their own Message-ID
headers generated, thus preventing the poster’s
MTA’s address or information from being present
in outgoing messages. Thus, all Message-IDs have
the site name of the MTA that Shibboleth uses. As
such, it is safe to configure Shibboleth to pass head-
ers like In-Reply-To and References, which can
be used for building threads. These headers should
contain only Message-IDs that were generated by
Shibboleth.

In practice, we also allow such personal touches
that are contained in headers like X-Face and
X-Attribution. MIME works by passing such

3This code isn’t actually committed yet, but we’re sure it
will be before the release of the system’s code in conjunction
with this paper’s publication.



headers as MIME-Version and Content-type. This
is all completely under the control of the list family
administrator.

For the sake of safety, Shibboleth adds a X-Loop
header and will recognize its own token as a means
of preventing mail loops. If the header and token
are present in an incoming message, Shibboleth will
not deliver the message; it will exit, logging the de-
tection of a mail loop.

4 Administration

Administration of a Shibboleth installation tends to
be somewhat intensive at first, while the system
learns different addresses the insiders will use and
what mail relays will deliver their mail. Once the
system has been running for a while, the regular
posters will have their profiles set properly, and the
system will not report problems for them except in
the cases of real errors or in major system configu-
ration changes (such as an ISP buying another and
changing an insider’s address).

The additional administration comes from the need
to train the system to recognize the legitimate mail
relays that are used by various insiders. Because we
use Perl patterns, one need not list every possible
relay host for each user: to allow any host with an
alphanumeric name inside of the zone example.com,
we can specify the pattern \w+\.example\.com.

Beyond this, there is little difference in the admin-
istrative operation of a Shibboleth list, as compared
to another list manager, such as Majordomo [4].
Because of our authentication system’s requirement
for strong authentication, it isn’t practical for us to
implement a web-based interface like that of Mail-
man [17].

5 Future Work

We have identified some areas where Shibboleth
could be improved.

5.1 Other Secure Mail Standards

Support for emerging standards, such as
OpenPGP [3] (which supports newer, some-
times more desirable options for ciphers and
hashing algorithms) and perhaps S/MIME [15],
would be useful. There are some tricky matters to
be resolved here, especially in allowing a moderator
to sign a signed message, sanely preserving MIME
Content-type data, etc., but it seems well within
reach.

An additional benefit to support of these stan-
dards would be that one could reasonably sign all
outgoing messages without the need to be con-
cerned whether such signing would create problems
for MIME-formatted messages. (Our RFC 1991-
compliant PGP, though convenient for approving
MIME-formatted messages, isn’t practical for sign-
ing things that will be reviewed by most MUAs.
Our option to have Shibboleth sign all outgoing mes-
sages would prevent most MUAs from being able
to decode MIME-formatted data properly. If we
could perform the signing in a way that’s friendly
with MIME, the sign-outgoing-mail feature would
be much more useful.)

5.2 Better Peer Support

Especially in an installation where many users dig-
itally sign their submissions to the mailing list and
where the system is signing each message it relays,
CPU overhead could be significant. It would be nice
if there were a more intelligent way to spread the
load among some set of hosts, rather than placing
all of the processing burden on one host and only
providing the option of giving the delivery burden
to another.

5.3 Better Moderation Scheme

Currently, there is a race condition for lists where
there are multiple moderators: all moderators for
a particular list get all copies of messages for that
list to be moderated. As a result, multiple approval
(and thus, multiple posts) are possible. We have
managed this problem by convention, but a more
intelligent system for moderation would include the
ability for a moderator to get some number of mes-
sages from the moderation queue and then work on



them himself, without leaving the possibility of du-
plicating another moderator’s work.

5.4 Tolerance of SMTP Irregularities

Our current implementation treats any irregularity
as an error that could indicate forgery, thus requir-
ing administrative attention. We have been think-
ing about ways of lightening this load somewhat
without losing the benefits of SMTP header veri-
fication.

The most interesting solution to this problem we’ve
considered so far is the addition of a runtime param-
eter that will specify the number of irregularities
that can be tolerated per message. Another run-
time parameter could be used to indicate whether
Shibboleth should automatically add the previously-
unknown relays to the user’s profile if they are fewer
than the specified number. Messages which have
come through more unknown relays than that num-
ber could continue to be handled in the manner
that today’s errors are: administrative attention.
Indeed, if they are not, messages will either mys-
teriously “disappear”, or we’ll override any benefits
derived from checking the headers at all.

5.5 Local User Dilemma

People with local access via normal user accounts to
systems that provide network services can often cre-
ate problems for those network services. Shibboleth
is no exception. Specifically, users who can inject a
message locally can fool our SMTP header verifica-
tion. Today, we do a simple enumeration of relays
and compare those hosts to patterns in a user’s pro-
file. If any pattern in a user’s profile does not match,
no error is signaled. This is a mildly difficult prob-
lem, since the primary use for these lists of patterns
is the allowance of posters to send either from home
or from work. Were we to trigger an error if a pat-
tern does not match, a message from such a user
would need to be sent from home and work at the
same time.

The best solution to this problem is to improve the
intelligence of the SMTP header parsing. Rather
than being a simple enumeration of hosts to be
checked against a pattern, the headers should be
parsed, thus telling us which host injected the mes-

sage into the network and which hosts merely re-
layed the message.

Even in such a scenario, we’re at the mercy of MTAs
that are out of our control. Perhaps in practice,
this will be good enough to provide us much more
security than we have now. Whether this is true
will probably depend on each installation, where its
users originate their mail, and which MTAs those
systems run.

Depending on the MTA and its configuration, local
users also have the ability to determine if a “user
unknown” bounce is legitimately generated by the
MTA or if it has been tricked into returning such an
error.

For the time being, we have to consider local users
“trusted”, and reducing such trust is an area for
further study.

5.6 Reducing Necessary Trust in Ad-
ministrators

As implemented, Shibboleth users must trust the ad-
ministrators. Though insiders are protected from
outsiders and from each other, they are not pro-
tected from administrators. Also, all administrators
have full administrative access to the system.

We’re particularly intrigued by the possibility of fu-
ture releases of Shibboleth actually distrusting ad-
ministrators and hiding sensitive information—such
as the members database—from them. Rather than
having any single administrator being able to query
the database for full user profiles, for example, what
if we were to require that multiple administrators’
signatures would be necessary to have Shibboleth re-
veal such information or perform especially “risky”
operations?

Another interesting possibility is where hosts would
be used for initially introducing new insiders to the
system, after which users would be individually re-
sponsible for maintaining their own profiles. (It
seems obvious that this would work only for rather
experienced or technical users, but could the system
be made to be smart enough that this is no longer
true?)



6 Conclusions

We have shown that it is possible for a group of
people who wishes to keep to itself can do so, even
in today’s Internet. Despite the lack of strong au-
thentication mechanisms for email at any level other
than application, it is possible to identify mail from
insiders, letting it flow normally, without requiring
that mail from outsiders flow just as freely. Even
less-than-perfect schemes, like SMTP’s simple head-
ers, can be employed to determine reasonably the
authenticity of a message.

Forcing all mail to insiders, public and private, to
run through Shibboleth solves the problem of posters
receiving multiple copies of posts later in the threads
to which they contribute.

Because only Shibboleth nyms are known, someone
cannot infiltrate the group, collect messages, and
then use those addresses for his own nefarious pur-
poses later. Once someone is no longer an insider,
those addresses immediately become useless to him.

A simple checklist of features and requirements will
show that we have satisfied our requirements. Our
experience with running mailing lists with Shibbo-
leth and enduring attacks against it gives us evi-
dence that these safeguards have in fact worked.

On a daily basis, we hear about the difficulty of
privacy and security on the Internet. Though not a
substitute for the needed support for security in our
infrastructure through efforts like IPsec [10], making
better use of what we have available can move us in
the right direction and bring us much closer to the
sort of well-behaved system that does our bidding,
and only our bidding.

7 Acknowledgments

Much of the first implementation of the original
design owes its existence to Eugene Sandulenko
(�en� Sandulenko). Thanks to Ed Sheppard for
suggesting the name.

References

[1] D. Atkins, W. Stallings, and P. Zimmermann.
PGP Message Exchange Formats. RFC 1991,
August 1996.

[2] T. Berners-Lee, R. Fielding, and H. Frystyk.
Hypertext Transfer Protocol – HTTP/1.0.
RFC 1945, May 1996.

[3] J. Callas, L. Donnerhacke, H. Finney, and
R. Thayer. OpenPGP Message Format.
RFC 2440, November 1998.

[4] D. Brent Chapman. Majordomo: How I
manage 17 mailing lists without answering
“-request” mail. In Systems Administration
(LISA VI) Conference, pages 135–143, Long
Beach, CA, October 19-23 1992. USENIX.

[5] D. Crocker. Standard for the format of ARPA
Internet text messages. RFC 822, August 1982.

[6] R Fielding, J. Gettys, J. Mogul, H Frystyk,
L Masinter, P Leach, and T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1.
RFC 2616, June 1999.

[7] N. Freed and N. Borenstein. Multipurpose In-
ternet Mail Extensions (MIME) Part One: For-
mat of Internet Message Bodies. RFC 2045,
November 1996.

[8] N. Haller and R. Atkinson. On internet authen-
tication. RFC 1704, October 1994.

[9] S. Hambridge and A. Lunde. DON’T SPEW A
Set of Guidelines for Mass Unsolicited Mailings
and Postings (spam*). RFC 2635, June 1999.

[10] S. Kent and R. Atkinson. Security Architecture
for the Internet Protocol. RFC 2401, November
1998.

[11] Eli Pogonatus. Email addressing FAQ
(how to use user+box@host addresses).
Usenet FAQ, December 1998. [online]
http://www.faqs.org/faqs/mail/addressing/.

[12] J. Postel. Simple Mail Transfer Protocol.
RFC 821, August 1982.

[13] J. Postel and J.K. Reynolds. File Transfer Pro-
tocol. RFC 959, October 1985.

[14] Jon Postel. On the Junk Mail Problem.
RFC 706, November 1975.



[15] B. Ramsdell (Ed.). S/MIME Version 3 Message
Specification. RFC 2633, June 1999.

[16] Bob Thomas. On the Problem of Signature
Authentication for Network Mail. RFC 644,
July 1974.

[17] John Viega, Barry Warsaw, and Ken Man-
heimer. Mailman: The GNU mailing list man-
ager. In Twelfth Systems Administration Con-
ference (LISA ’98), page 309, Boston, Mas-
sachusetts, December 6-11 1998. USENIX.

[18] F. Wancho. Message Digest Format. RFC 1153,
April 1990.


