Pelendur: Steward of the Sysadmin

Matt Curtin®*

Sandy Farrar

Tami King

The Ohio State University
Department of Computer and Information Science
{emcurtin,farrar tami}@cis.ohio-state.edu

November 27, 2000

Abstract

Here we describe Pelendur, a system for the man-
agement of common system operation tasks. Specif-
ically, Pelendur focuses on the management of user
accounts and related information (such as groups)
across platforms and even for particular software
packages (like databases) that require user authen-
tication. Pelendur has reduced the massive pro-
cess of deleting expired accounts and creating new
accounts between terms from a week-long opera-
tion by several part-time operators (with subsequent
cleanup by a collabortion of instructors and staff)
into a completely automated process that requires
less than 15 minutes of staff work and completely
eliminates the need for instructor intervention.

1 Introduction

In 1998, our department was in the midst of a mas-
sive migration of our computing facilities wherein we
moved from an architecture of many HP-UX clus-
ters to an architecture using Solaris-based function-
specific servers with thin clients in offices and labs.
Some of the software used in the old environment
needed to be replaced [3]. Because of severe limi-
tations in the functionality and correctness of the
largely ad-hoc scripts run by operators for the cre-
ation of accounts, it was determined that an account
management system capable of managing our evolv-
ing multiplatform environment was needed.

*Now at Interhack Corporation.

1

1.1 Yet Another Account Management
System?

The idea of implementing a software system for
the management of user accounts is not new; past
years’ LISA conferences have seen many such sys-
tems. Even if we briefly ignore the issue of availabil-
ity, some systems described were unsuitable because
of extreme differences in the way that accounts are
created and managed [1, 5] and incompatible means
of handling account data [7, 11, 9, 10, 4, 8].

In the end, the most compelling reason for us to
build our own software was that a grander vision ex-
isted: a single data repository for our department,
which would include such things as data needed
for user accounts, course-specific computing require-
ments, and access to various limited-access depart-
ment resources. We could not find any available ac-
count management system that would work easily
with any sort of database that we would construct.

1.2 The Academic Environment

Account management, though a fairly straightfor-
ward task, is quite demanding in an academic envi-
ronment. Each term, we receive course rosters from
the university registrar. Although students who ma-
jor in computer and information science have “per-
manent” accounts (those that will remain until after
they graduate or change majors), we have thousands
of other accounts that are created specifically for the
duration of the term. We have one week between
most terms, which means that during this time, we
need to delete potentially more than 2,500 accounts
and then create another 3,000 accounts for the next
term.

In this paper, and in our environment, we use a term
that will be important to understand: “section”.
This is a specific “class” that meets together. This
term is introduced because many sections of a given
class can be scheduled for the same term and we
need to know the most granular level of grouping
available from the registrar.

1.3 System Requirements

Specific requirements for this system were identi-
fied. In its full design, our scope is actually much
more broad than the rather specific task of account
management. The reason for this is that parts of ac-
count management (such as determining how much
quota to associate with an account) are dependent
on other criteria like the requirements for courses
that the user of that account is scheduled to take.
For example, a course that deals with particularly
large data sets might have a requirement for more
than the default amount of disk quota.

Initial requirements focused on the actual manage-
ment of user accounts and dependencies.

Account Management This is the management
of individual account profiles. Adding, editing,
expiring, and purging them.

Course Management Courses have particular re-
quirements (such as the need for one platform
or another and the use of a software system
like Sybase) that need to be configured and
managed. Some of these configuration options
are simple matters of preference. Others are
matters of policy, which the course coordina-
tor does not have the authority to change.
(Though we refer specifically to courses, there is
nothing that prevents these entities to be man-
aged from being project groups, departments,
or any other sort of group that might have par-
ticular requirements in other environments.)

Resource Management Anything that exists in
our environment (such as “Unix machines”,
“NT machines”, “Sybase database”, “disk
quota”, “print quota”, and “color printers”)
might also need to be managed. As these are
neither accounts nor courses, but share ba-
sic properties, we classify all of these as “re-
sources”. The basic point here is that users
who are administratively responsible for these

reousrces mangage them through Pelendur in-
stead of having us perform all of the manage-
ment tasks for them.

Additional requirements were slated for future de-
velopment. Some of these features are now imple-
mented and others are still on our “to-do” list.

Unix groups As we use groups to manage sets of
users on the Unix systems, Pelendur should be
aware of groups and know how to use them.
(This interface is now partially implemented,;
new groups are created, but old groups are not
garbage collected.)

Mailing lists Some of our course instructors and
students prefer to use mailing lists to stay
in touch. We presently use both faculty-
maintained aliases files and Majordomo [2],
but are now investigating the possibility of re-
placing both of these mechanisms with Mail-
man [12].

Course directories Because some courses have
group projects or software that is specific to the
course, we need to be able to associate directo-
ries with a given course. Handling of filesystem
permissions should enforce the policy for read
and write access established by the instructor.

Multidomain management Currently, every-
thing that is a part of the instructional
environment is considered “the system”. Ac-
counts that belong to individual research labs
are not managed by Pelendur but it could be
convenient for us to have that option available.
Should we do this in the future, it would be
nice to have the option of having a single Pe-
lendur installation be able to manage multiple
“systems”, rather than having to make a new
installation of the software for each domain
that needs to be managed. This feature would
also be useful to include access to limited-
access machines, such as those that are set
aside for long-term computationally-intensive
jobs.

Electronic lock systems A relatively new addi-
tion to our department is an electronic lock
system, whereby ID cards are used for access
control instead of physical keys. Presently, this
is managed by a standalone DOS-based system.

Course newsgroups Most courses in our environ-
ment is assigned a newsgroup on our local news

server. This is the default means of provid-
ing an “out of class” communication channel.
Presently, we just create new groups as new
courses are added and cancel the messages in
the groups at the end of each term by hand.
Though this is not a big time-sink, we would
like for these processes to be automated.

Course-specific environment Some courses
have particular environmental needs, such as
a course-specific $PATH setting, for example.
Pelendur can provide this.

“Any computing resource” As we continue to
move forward, other resources are identified
and incorporated into the system’s functional-
ity. At a very high level, the goal of the system
is to manage the systems’ configurations so that
system administrators can do other things that
computers can’t do very well, like planning.

2 Design and Implementation

Pelendur is a large system, made up of several pro-
grams. We'll first describe the philosophies that in-
fluenced the system’s design and then consider the
programs and major library modules that these pro-
grams use.

2.1 Data-Driven

The entire system sits atop a Sybase relational
database. Rather than creating code that would
depend upon very specific data, working with enti-
ties that make sense for our environment, we opted
to put as much of the system in data as possible
and to make those data be as generic and flexible
as possible. Thus, rather than dealing with courses,
sections, and instructors, other users of Pelendur
will be able to work with teams, departments, and
project coordinators. Each deployment of Pelen-
dur will define its own terms and the relationships
among them that make sense.

We believe it important to emphasize that this
makes the integrity of the database especially crit-
ical. In such a highly dynamic system, we’re not
dealing with simple cases of the Wrong Thing fail-
ing to achieve the desired result. Data that have
been compromised by a moderately clever attacker

can be used to attack the system itself, creating ac-
counts for attackers, granting them privileges to the
entire system, and possibly even running commands
with superuser access.

The schema is represented in Figure 1. Here we
describe each of these tables in some detail.

People contains information about a person.
When a person is added to the table they are
assigned a database identifier and a user login.
Those two values will be used to tie a person
to their resources.

Account is a table that contains information about
individual accounts.

Classification contains information on thingies in
the system. A thing can be anything with the
exception of a person or an individual account.
Most classifications define a resource or a mem-
bership group. There are also templates and
defaults in Classification that are used to cre-
ate resources and membership groups or define
certain values in the system (e.g., what the cur-
rent quarter is). Each classification is assigned
a unique number (SID) when it is added to the
database.

MembershipIn contains the memberships for the
membership groups from Classification. It
maps a user login to a SID and is used to de-
termine what resources that login should have.

UserRights defines owners of classifications and
grants access to users for a classification. This
allows a user to manage resources for their
membership groups.

ResourceUsedBy defines what resources a clas-
sifications has. It also indicates if the resource
can be edited by the owner or proxy of the clas-
sification.

ResourceGroup links classifications together.

2.2 Flexible

We made an effort to avoid “hardwiring” anything
in the system. This was largely accomplished by
taking a very dynamic view of the data. That is,
instead of having an “account” with a “disk quota”
field that would be assigned a value based on the

Classification People
1|, sp 1 UNIVERSITY_ID
DESCRIPTION \ Member shipin BUCK_ID

NAME nl-_sbo SN
EXPIRES USER LOGIN NAME
CREATION_DATE 1S GUEST LNAME
PID EXPIRES FNAME
RESOURCE MNAME
HAS MEMBERS ADDRESS
ENSURE_ACCOUNT DATE_OF BIRTH
ATTRIBUTE PHONE_NUMBER
METHOD UserRights EMAIL_ADDRESS
n
SID |t usrlioow
USER_LOGIN UNIX UID
OWNER
Resour ceUsedBy PROXY
n__RD REGISTRAR
n| sSb ASSOCIATE
IS REQUESTED Account

Resour ceGroup
n GID
n SID

NAME

AID
UNIVERSITY_ID
TYPE

USER_LOGIN
CREATION_DATE
FLAG
ATTRIBUTE

Figure 1: Schema of Pelendur’s Database

state of the system at the time of the account’s
creation, all information about an account must go
through a process of resolution, where its dependen-
cies are determined and the values for each of the
account’s properties are resolved at run-time. This
view was taken for everything in the system, not
just accounts.

Something else that we incorporated in order to al-
low maximal flexibility is a system of property inher-
itance. Although dealing with a relational database
system at the core, we were able to provide the abil-
ity to inherit properties from a parent by specify-
ing a relationship between various records in the
database by defining a “parent ID” (Called “PID”)
as a means of determining which “SID” is one step
closer to the root than the current.

This gives us the ability to specify object-oriented
“is-a” relationships between records in the database.
Thus, the “tree” of elements to be resolved can be
of an arbitrary depth, allowing each site (and each
particular type of resource being managed) to have
an appropriate number of levels to support the sort
of abstraction desired, without forcing some high
level of overhead on those who do not need to deal
with such abstractions.

A good example of how we use the ability to inherit
properties is in the case of a series of courses that

a student will take in sequence. There will be some
Classfication table entry that will identify the series.
Each course in the series will have its own Classifi-
cation entry whose PID identifies the Classification
entry of the series as the parent. Each section in a
course will have its own Classification entry whose
PID identifies the Classification entry of the parent
course. Thus, configuration changes are made at
the appropriate level: those that affect all sections
in the series will be made in the Classification en-
try for the series, those that affect all sections in a
specific course in the series will have those changes
made in the course’s Classification entry, and those
that are specific to a particular section will be made
in that section’s Classification entry. When we need
to determine how much quota, for example, an ac-
count has, we’ll determine which sections in which
the account has membership. Those will be resolved
by walking up the tree until we get to the root object
(as determined by having a PID of 0), populating
the fields in memory with the values in the database
and returning. By the time the initial Classification
entry returns, we will have queried each level in the
tree, populating the object with the levels specified
at the highest level first, and overriding those with
whatever (if anything) was specified in the lower
levels.

Additionally, where values are numeric, they need
not be absolute; signed numeric values indicate rel-

ative values. Consequently, a property of a Classi-
fication might be to increase disk quota by 30MB,
instead of specifying some absolute value.

2.3 Modular

Rather than requiring code changes in many differ-
ent places in order to create new interfaces in the
system, we designed the system to be made up of
a basic core which includes the database and the
resource resolution logic. The rest of the system in-
terfaces to that core. The core understands when
an account needs to be created, or what the prop-
erties of an account at any given time should be,
but it knows nothing about creating accounts. In-
stead, it can tell what the account’s properties are
and what system(s) need to reflect those proper-
ties. If the account needs access to both Unix and
Sybase, the core will pass the appropriate informa-
tion to the modules for Unix and Sybase through a
standardized interface.

As described in section 2.4, this design makes it pos-
sible for even the database itself to be replaced with
another database that has the same schema.

2.4 TImplementation Language

Perl was chosen as the implementation language. Its
freely available DBI (database interface) and DBD
(database driver) package for talking to a wide va-
riety of databases makes it an excellent option for
building atop a database:

e Very little investment is made in an interface
to any particular database (since we code to
DBI), thus allowing us (theoretically) to use
any database for which a DBD module exists.
In practice, we did use one Sybase-specific fea-
ture, which we can and will in the future stop
using.

e We can spend our time focusing on the prob-
lem at hand, instead of how to write to the
database.

e Being free, the price is right.

e Since source code is available, if there is a prob-
lem with it for which a fix is not available, we
can fix the bug ourselves.

Because parts of this system will need to run with
superuser privileges, we’re concerned about safety
of our code. Perl has some excellent safety features:
namely, the ability to identify “tainted” data and
support for arrays and buffers that grow dynami-
cally.

Finally, Perl is available on a huge number of plat-
forms. As long as we keep portability in mind, Perl
will provide us all of the language support necessary
to allow our code to run unmodified on essentially
any system we could use in the forseeable future.

2.5 Programs

rosterload is the program that loads rosters into
the database. In our environment, rosters are
course rosters that identify which students and
instructors should be associated with a given
section. For the most part, rosterload just
calls Roster: :rosterload, which does all of
the work. Our plans are for rosterload and Ros-
ter.pm to be modified to be able to load roster
information directly out of the Data Warehouse
or from email.

makeaccounts is the program responsible for cre-
ating things, that is, resources and accounts.
First it will initialize the resource methods,
then it creates any resources that don’t already
exist. Then it creates any accounts that don’t
exist. We have a cron job run makeaccounts
runs twice per day.

expireaccounts is our garbage collector; it’s re-
sponsible for removing things from the system.
Expired resources are removed from both the
database and from the systems that were used
to support the account. After this has been ac-
complished, it will remove entries in the “Mem-
bershipIn” table that have expired and then
any user resources that are specified for the
user in the database. cron runs expiresaccounts
once per day.

notifier sends account removal notifications. All
accounts scheduled to be removed will receive
a seven day notification. Account that are ‘per-
sistent’ will also receive a 30 and 14 day noti-
fication of expiration.! Note that this includes
not only accounts for operating systems, but

1The amounts of time on the notification are configurable
parameters.

this also includes “accounts” in software sys-
tems like Sybase. As Pelendur continues to
help us blur the distinctions among different
systems that comprise the “computing environ-
ment”, we’ll move away from providing notifi-
cation that specific systems’ accounts will be
unavailable and provide notification only on the
user’s “meta-account” in the department. The
Sybase account will be created as soon as the
student shows up on the roster for a class that
has this resource. The account will always?
match the Unix login name and will have the
typical default password.

crconfig is the course configuration interface for in-
structors. This provides a convenient means
for them to manipulate the database in a con-
trolled manner, allowing them to change only
that which is under their administrative au-
thority without creating artificial restrictions
that require staff to perform their adminis-
trative tasks for them. Instructors and their
“proxies” (those whom they designate) to add
and to remove resources from a particular sec-
tion and a course default. Project and course
directories are also configured through this in-
terface.

cradmin is the account management administra-
tion tool. Essentially, this is the interface
that is used to manipulate the state of the
database on anything that is in the database.
Where crconfig deals with abstractions and has
a “course-specific” view of the world, cradmin
allows manipulation of non-course-related re-
sources. The user interface itself still works
with many of these abstractions, but it is in
this program where we can make changes to the
user interface to allow administration of new re-
sources.

2.6 Modules

Here we describe the major modules of the Pelen-
dur system. Many of these modules are shared by
various standalone programs in the system.

2«Always” is a pretty strong word. There are a few excep-
tions, as the result of ancient accounts that predate Pelendur
that still contain dashes (=) so they can’t be used as logins
to Sybase. If the username has a dash in it, the dash will be
converted to an underscore () for the Sybase account. New
accounts are always created with names that are portable
across our systems so that these kinds of conversions will not
be necessary.

IICFDB.pm is the module contains the generic

routines for interacting with the account man-
agement database. There is typically a rou-
tine for each table for searching, adding, and
removing. They follow the naming conven-
tion get_<table-name>, add_<table-name>,
remove_<table-name>. Table names are con-
verted to lowercase and underscores are used
where there would be white space (“Member-
shipIn” becomes membership_in). For some
tables an update function exists also. The
get_ routines are all polymorphic and will do
different searches depending on what data is
passed to the routine. This module also con-
tains the routines to walk the database recur-
sively (resolve_pids) in order to resolve all
dependencies and provide an up-to-the-second
view of an account’s properties, as determined
by what the database knows about the account.

IICFLog.pm is our logging mechanism. Presently,

this basically accepts messages and puts them
in the “right place”, but the intention is that
it will be a general-purpose log gatherer for all
applications in our environment.

IICFLogin.pm contains the routines that deals

with logins in our environment. It contains the
routines that generates new usernames and de-
fault passwords.

NT.pm contains the routines to do all things on

the NT systems. It is currently not imple-
mented; an older standalone account creation
and deletion system was developed locally for
NT accounts. Instead of implementing this part
of the system initially, we opted to focus on the
Unix, Sybase, and core database portions of the
system, building an interface between Pelendur
and the old NT account management scripts.
This decision has turned out to work relatively
well for us, and has saved us from what could
have become a large amount of redundant work
as Microsoft seems to think that making major
interface changes from version to version of its
operating systems is an appropriate thing to
do. Thus, we can avoid writing most of NT.pm
until the NT based systems are on a newer ver-
sion of the operating system than the current
programs support.

PQuota.pm interfaces with the printing system’s

quota handling. We use LPRng [6] for our
printing system throughout the department.

ResourceMethods.pm is a module that contains

all of the methods for the resources in the ac-
count management system. Each resource has
its method defined for it in the METHOD field
in its “Classification” entry. When called, this
method will ‘do the right thing’ for the re-
source. For example, a resource like “mailing
list” might have a method that specifies a pro-
gram to be run in order to create or to delete
the mailing list.

Roster.pm contains the routines for processing
the roster.

Sybase.pm contains all of the routines for dealing
with Sybase resources.

Unix.pm contains all of the routines for Unix re-
sources. It adds and removes accounts in the
password file, manipulates the group file, and
generates the Quotas file for disk quotas.

mkcisdir.pm is used to create and to remove di-
rectories on the Unix systems. It handles sev-
eral types of directories: users’ home directo-
ries, group project directories, and the directo-
ries used by Submit, our program for electronic
laboratory submissions. Where possible, this
module will run as the owner of the directory
instead of root.

3 The Effect of Pelendur

Our environment has benefited tremendously from
Pelendur in many ways. What used to be a painful
experience for all is now essentially a non-event.

3.1 Labor

The total staff labor expenditure for processing ac-
counts between terms is greatly reduced.

e Accounts to be removed are no longer processed
manually. When an account has no more ref-
erences (managed through the MembershipIn
table), the account is garbage collected.

e Instructors would manually add and remove
students from their sections using hardcopy
provided by the university registrar. We now
get these data from the registrar directly and
automatically add and remove students.

3.2 FError Rate

Historically, this has been a problem. The old soft-
ware had to run by someone who knew its idiosyn-
crasies and limitations. Mistakes were frequent and
could easily require several hours to fix. Errors are
now much less frequent, because we get data di-
rectly from the registrar and do not require any
manual intervention before account configuration.
Because the entire state of the system is driven by
the database, errors can now be fixed by making
appropriate changes in the database and waiting for
Pelendur to propagate them.

Since managing our systems with Pelendur, we have
been able to identify accounts that have expired long
ago but were never removed, to identify problems
that arise because of an account being misclassified,
and generally to free ourselves of the kinds of con-
cerns that come about when the administrators need
to manage things manually.

3.3 Latency

In section 2.5, we identified which parts of the sys-
tem run on a regular basis in our environment.
These are configurable to a site’s requirements.
In our environment specifically, this means that
changes made take no more than one day to take ef-
fect. This is a huge difference from the days, weeks,
or even more that it took under the old system.

4 Future Work

Quite a lot can still be done with Pelendur. Specif-
ically, we need to increase the number of systems
against which we can interface, including native NT
account management, more intelligent

5 Conclusions

Account management can be greatly simplified by
taking a more abstract view and thinking of system
access as a property that results from the state of
the account. Pelendur has proven to be a highly

effective means of managing a very large number of
highly variable accounts.

6 Availability

Although the system has been designed and imple-
mented in a way that emphasizes flexibility and free-
dom from very a very site-specific view of the world,
it will still take quite a bit of effort for another site
to bring Pelendur into production. We're currently
working on finishing the functionality and hope that
we will be able to revisit some of the areas of the
system that work for us but would make it difficult
or impossible for other sites to use the system as-
is. This work is geared toward making a general
release of the system. We have no idea when this
could possibly take place.

References

[1] Bob Arnold. Accountworks: Users create
accounts on SQL, notes, NT, and UNIX.
In Twelfth Systems Administration Conference
(LISA ’98), page 49, Boston, Massachusetts,
December 6-11 1998. USENIX.

[2] D. Brent Chapman. Majordomo: How I
manage 17 mailing lists without answering
“request” mail. In Systems Administration
(LISA VI) Conference, pages 135-143, Long
Beach, CA, October 19-23 1992. USENIX.

[3] Matt Curtin. Creating an environment for
reusable software research: A case study in
reusability. Technical Report OSU-CISRC-
8/99-TR21, The Ohio State University, De-
partment of Computer and Information Sci-
ence, August 1999.

[4] Daniel E. Geer, Jr. Service management at
project athena. In Large Installation Sys-
tems Administration Workshop Proceedings,
page 71, Monterey, CA, November 17-18 1988.
USENIX.

[5] J. Archer Harris and Gregory Gingerich. The
design and implementation of a network ac-
count management system. In 10th Systems
Administration Conference (LISA’96), pages
33-41, Chicago, IL, September 29 - October 4
1996. USENIX.

[6] Patrick Powell and Justin Mason. Lprng - an
enhanced printer spooler system. In Ninth Sys-
tems Administration Conference (LISA ’95),
pages 13-24, Monterey, CA, September 17-22
1995. USENIX.

[7] Paul Riddle, Paul Danckaert, and Matt Metafe-
ria. AGUS: An automatic multi-platform ac-
count generation system. In Ninth Systems
Administration Conference (LISA ’95), pages
171-180, Monterey, CA, September 17-22 1995.
USENIX.

[8] Mark A. Rosenstein, Daniel E. Geer, Jr., and
Peter J. Levine. The athena service manage-
ment system. In USENIX Conference Proceed-
ings, pages 203-211, Dallas, TX, Winter 1988.
USENIX.

[9] Henry Spencer. Shuse: Multi-host account ad-
ministration. In 10th Systems Administration
Conference (LISA’96), pages 25-32, Chicago,
IL, September 29 - October 4 1996. USENIX.

[10] Henry Spencer. Shuse at two: Multi-host ac-
count administration. In Eleventh Systems Ad-
ministration Conference (LISA °97), page 65,
San Diego, California, October 26-31 1997.
USENIX.

[11] Gregory S. Thomas, James O. Schroeder, Mer-
rilee E. Orcutt, Desiree C. Johnson, Jeffrey T.
Simmelink, and John P. Moore. UNIX host
administration in a heterogeneous distributed
computing environment. In 10th Systems Ad-
ministration Conference (LISA’96), pages 43—
50, Chicago, IL, September 29 - October 4
1996. USENIX.

[12] John Viega, Barry Warsaw, and Ken Man-
heimer. Mailman: The GNU mailing list man-
ager. In Twelfth Systems Administration Con-
ference (LISA ’98), page 309, Boston, Mas-
sachusetts, December 6-11 1998. USENIX.

