A Brute Force Search of DES Keyspace

Matt Curtin* Justin Dolske
interhack.net ANS Communications
cmcurtin@interhack.net dolske@Qreston.ans.net

This article to appear in the May 1998 issue of ;login:.

“When in doubt, use brute force.” —Ken Thompson

Abstract

The Data Encryption Standard (DES) has been the workhorse of cryptography for some 20 years. Its
wide deployment and small (by today’s standards) key size make it an interesting target for attackers.
This paper discusses the first public “crack” of a DES-encrypted message using brute force, and shows how
the sort of power necessary to reproduce this can be mustered by individuals and very small organizations
with little or no funding.

We originally suggested that this work is repeatable, and have been proven correct, as DES has fallen
again, and RC5-32/12/7 has been defeated by brute force. We strongly advise systems based on DES to
be replaced with systems that use longer keys.

1 Introduction

On January 28, 1997 RSA Laboratories launched a series of cryptographic challenges [5]. The goal was to
find secret messages which had been encrypted with keys of varying length. One of the most tantalizing of
these challenges was based on DES, a widely used encryption algorithm with a 56-bit key. Soon after two
easier challenges had been broken, attention turned to the DES challenge.

Led by Rocke Verser, Matt Curtin, and Justin Dolske, the DESCHALL effort [8] sought to crack RSA’s
DES Challenge [5] by means of a large-scale, distributed computing project on the Internet. We simply
endeavored to try each of the 256 (over 72 quadrillion!) keys that might have been used to encrypt the secret
message—a, brute force attack. Brute force attacks like this are naturally suited to distributed or parallel
computing efforts, since they essentially consist of a large number of independent problems—the testing of
each key.

Although not a new attack by any means, brute force key search has been a metric by which the security
of cryptosystems are judged. If an algorithm is believed to be “safe”, that typically means that the best
known attack against the system is infeasible. Often, a “safe” algorithm’s security is measured in terms of
the cost of a brute force attack. The number of possible keys determines the feasibility of this attack.

While there has been relatively widespread belief that government intelligence agencies have had the
technology and resources available to efficiently perform brute force attacks against DES, no one had ever
accomplished the feat in public before this project’s success. DES is still widely deployed in a variety of
environments, including financial circles. DES is, therefore, a real target, and because of its relatively small
key size (by today’s standards), it’s an attractive one.

*This work completed while Matt was at Megasoft Online and Justin was at The Ohio State University.
1 Unfortunately, names of large numbers are ambiguous. We’ll use the US convention for these, and also provide an unam-
biguous representation of the number where necessary throughout this article.

2 Architecture

Our approach centered around a single “key server” which kept track of which blocks of keys had been tested.
Clients would then contact the server, via the Internet, to request work and report the results, as illustrated
in Figure 1.

Key Firewall
Server

28.8kbps

Clients connected
via ISPs

Clients connected by
Internet-reachable LAN

Figure 1: DESCHALL Architecture

2.1 Protocol

All communication between a client and the server was done through the UDP protocol, a standard part of
any IP stack. UDP is a low-overhead, connectionless protocol that was sufficient for our needs. The protocol
used is an extension of the one designed and used by Germano Caronni in the crack of RSA’s RC5-32/12/6
contest [4]. It consisted of just a few simple messages:

“Initial” request provided the server with the client type/version, and requested an initial block of keys
to check.

“Not found” request reported a range of previously assigned keys which were found to not contain the
key, and requested a new block of keys to check.

“Answer” reply sent by the server in reply to a client’s request for more work (via either of the above two
messages).

“Message” reply could be sent by the server to cause a text message to be displayed by the client, in
order to convey important information.

“Kill” reply could be sent by the server to cause a client to terminate.

Clients would automatically increase the size of the key blocks they requested so that they would gradually
reach the point where a block of keys took about 30 minutes to test. Blocks were always 2"V keys in size,
where N was generally between 22 and 30.

Additionally, all messages dealing with key blocks included checksums for message integrity, since UDP
(as a low-overhead protocol) does not make any such checks itself. To help prevent sabotage, the client’s
“Not found” message contained additional data, calculated during its search, to allow the server to verify
that the client had actually searched the assigned keyspace.

2.2 Server and Clients

For most of the challenge, the keyserver was an IBM PS/2 Server (a relatively slow 486 based system) with
56 MB of RAM, connected to the Internet via a dedicated 28.8 kbps PPP connection. This server was able

to easily handle the load from approximately 10,000 clients, although a Pentium based backup server was
occasionally used during periods of unusually high load.

The clients that used this protocol were designed to run on a wide variety of systems. By the end of
the contest, we had 40 different clients available for a variety of different hardware and operating system
combinations. All of the clients running on Intel (or compatible) and Macintosh PowerPC hardware contained
hand-optimized assembly code, while the remainder of the clients were entirely done in C. Java was briefly
considered, but it was quickly dropped—we already had clients for a large variety of systems, and it was
generally agreed that the speed of a generic Java version would be unacceptable.

The clients were highly optimized for decrypting DES messages, using a variety of methods to optimize
the DES process and detect non-winning keys as early as possible. Using these methods, a 200 MHz Pentium
system was able to test approximately 1 million keys/second, and a 250 MHz PowerPC 604e based system
reached 1.5 million keys/second. Towards the end of the contest, we introduced a “bitslice” client inspired
by Biham [3] which was extremely fast on 64-bit systems, as well as slightly faster on most other systems.

With this new client, a 500 MHz Alpha was able to test 5.3 million keys/second, and a 167 MHz
UltraSPARC was able to test 2.4 million keys/second. In the end, Intel-compatible systems accounted
for 53.8% of the keys searched, SPARC based systems for 21.3 %, PowerPC systems for 8.1%, and a mix of
other systems for the remaining 16.8% of the keys.

All of the clients would, by default, run with low priority, so that only “idle cycles” would be used, rather
than interfering with the work that the host would normally perform. An interesting side-effect of the “only
use idle cycles” approach of DESCHALL, shown in Figure 2, is that weekends would show significant peaks
in average host speed, as there were more idle cycles generally available. Also, performance improvements
in the clients contributed toward a steady increase in average host speed.

DESCHALL Average host speed (estimated)

550 T T T T T T T

500 E
450 N
400 - E
350 E
300 -
250 -
200 -

150 1 1 1 1 1 1 1
Marl5 Mar29 Aprl2 Apr26 Mayl0 May24 Jun07 Jun2l

Day (to Midnight, Jun17)

Thousands of Keys/sec

Figure 2: Estimated Average Host Speed

2.3 Gateways and Proxies

Soon after DESCHALL began to become popular, we found that firewalls at some sites would block the
UDP messages the client and server were trying to exchange. To circumvent the problem, we developed a
pair of “gateways” or “proxies” that would tunnel the UDP messages through TCP connections, illustrated
in Figure 3. One of these proxies would sit inside the user’s network, and the other was maintained by the
DESCHALL organizers. Clients running behind a firewall would use the “U2T” gateway as a keyserver. The
U2T gateway would receive the client’s datagram, and send the data through a TCP connection to the “T2U”
gateway. The data was also reformatted to simulate an HTTP (Web) request, to allow passage through
firewalls that disallowed arbitrary TCP connections but allowed Web access. For sites with application-layer
firewalls, the client’s U2T gateway could use the site’s Web proxy, which would forward the request to our
T2U gateway. Via either method, the T2U gateway would then convert the received data back into a UDP
datagram, and send to to the keyserver.

The DESCHALL gateways allowed a large number of people to participate, who would have been other-
wise unable. For example, the entirety of Sun Microsystems’ contribution (ranked 5th in total keys tested)
was conducted through the gateways.

—

Server

T2U T2U
Proxy Proxy
1
Client Client

U2t Client Client
Proxy

Figure 3: DESCHALL Proxy Architecture

3 Results

We have demonstrated that a brute-force search of DES keyspace is not only possible, but is also becoming
practical for even modestly funded groups. RSA’s prize for the find was US$10,000; it is safe to say that
DES is inadequate for protecting data of any greater value.

3.1 Small Keys are Bad Keys

With the increasing amount of computing power available at lower and lower costs, today’s cryptosystems
must be able to withstand brute-force attacks that would have been unthinkable in the relatively recent past.
Simply put, DES and other small-key cryptosystems are weak, and vulnerable to attack by groups with even
minimal funding.

What we have done is something that the security community has known to be possible for some time.
To our knowledge, however, this is the first time that a 56-bit key for DES (or any cryptosystem) has been
successfully found in a brute force search.

3.2 Wide Availbility of Massive Computing Power

At the same time that the cost of computing is going down, the availability of massive computational power
is increasing. Given the ubiquity of the Internet and the fact that key search is easily parallelizable, it’s
relatively easy to harness the power of many thousands of computers of all types.

During the course of the DESCHALL project, more than 78,000 unique IP addresses were recorded by
the keyserver as having participated to some extent. We had a peak of about 14,000 unique hosts? within
a single 24-hour period. All participants were volunteers; a one-time prize of US$4,000 was awarded to the
person whose machine found the winning key.

While we did get a relatively large number of hosts to participate, it’s very easy to imagine getting a
much larger number of hosts involved. Three major considerations influenced the number of hosts available:

1. Because of concern about government restrictions on the export of cryptographic products from the
US, our client distribution site would only allow hosts within the US or Canada to download our clients.
This certainly restricted many of our friends abroad from participating.

2We actually mean TP addresses, which we assume to be hosts. The actual number is inflated by the number of participating
hosts whose IP addresses are dynamically allocated and deflated by the number of hosts that participate from behind proxy
gateways.

2. Everyone downloading and installing our client had to go get it, know what it did, and usually had
to put forth some effort to keep it running. Spending time to make the client a neater “package”,
automatically making it start at system boot time, or implementing it as a screen saver, might have
allowed more of the hosts that participated only briefly (i.e., until the system was rebooted) to remain
active in the effort through its duration. If we were interested in accomplishing our objective without
regard to ethical considerations, we could have built our client’s functionality into viruses, worms, trojan
horses, ActiveX controls, and other pieces of software that would do our bidding less conspicuously,
likely even without the knowledge of the machine’s owner.

3. The project ran for a relatively brief time: about three months. During this time, our effort gained in
participating hosts and computing power. If we required more time, the number of participating hosts
would have been greater. At some point, we would certainly have “topped-out”, but that point was
nowhere in sight at the time we found the key.

Often, when performing risk analysis, one will consider a threat model in terms of varying degrees of an
attacker’s resources (“rogue individual”, “moderate”, “well-equipped”, etc.)

The dropping cost of computing technology and the easy access to large numbers of machines tends to
blur the distinctions among the classifications. Now, individuals and small groups can muster the resources
equivilant to several large organizations. Data that was once considered to be be vulnerable only to an
attack by a “large, well-equipped organization” may now be vulnerable to a just few people with friends on
the Internet and no budget. This ability may especially affect policies that have assumed a feasable attack
on DES would require an investment in specialized hardware.

3.3 Inefficiency of Software Key Searches

The ease of development and deployment of a software-based system has its tradeoff in the amount of
computational power necessary to accomplish a given task. Hardware implementations are always much
faster and more efficient than their software counterparts.

Rocke Verser estimates [9] that a 10,000 cell FPGA should be able to process nearly 100 million keys per
second.

Michael Wiener presented a design for a DES key search machine [10]. A $1,000,000 version of the machine
would be capable of finding DES keys in 3.5 hours, on average. A late-1997 version of this machine [11]
would be capable of finding DES keys in 35 minutes, on average. A $10,000 version of this machine would
be capable of finding DES keys in 2.5 days, on average.

A dedicated, funded attacker is going to use more efficient methods of key search than idle cycles of
general purpose computers. However, a hardware-based attack requires a substantial investment in the
hardware. Even though a software-based attack like DESCHALL is inefficient in comparasion, we were able
to take advantage of the huge numbers of general-purpose computers already deployed, as essentially no cost.

3.4 Scalability

DESCHALL’s relatively simple architecture was able to accomplish a tremendous amount of work. On our
peak day, we sustained a search rate of just under seven billion (10°) keys per second. On that day alone,
more than 600 trillion (10'2) keys were searched. Figure 4 shows our search rate, in keys per day, from
mid-March until we found the key in mid-June.

Much of the amount of work accomplished was due to the number of hosts participating. As shown in
Figure 5, fewer than 1,000 hosts per day were involved in early April, and nearly 14,000 per day ran the
client at peak.

Figure 6 shows that our progress over the course of the project was steady, and that the architecture we
had in place was adequate to meet the demands made of it.

Although we had additional keyserver capacity available should a need suddenly arise, it turned out to be
unnecessary. Elaborate systems, including such things as hierarchical keyservers, turned out to end up either
unimplemented or problematic in starting and maintaining. We found it best to plan to scale the system as
high as it could go without requiring additional components, but have those additional components ready,
just in case of an unexpected increase in system load.

Trillions of Keys

of Hosts

Trillions of Keys

DESCHALL Keys per day
700 T T T T T T T T T T T T T
600
500
400
300
200
100 |

0 1 n 1 L 1 L 1 L 1 L 1
Marl5 Mar29 Aprl2 Apr26 MaylO May24 Jun07 Jun2l
Day (to Midnight, Junl7)

Figure 4: Keys Searched per Day

DESCHALL Hosts per day

14000
12000 -
10000 -
8000
6000
4000
2000

0 1 L 1 L 1 L 1 L 1 L 1 L 1 L
Marl5 Mar29 Aprl2 Apr26 Mayl0May24 Jun07 Jun2l
Day (to Midnight, Junl7)

Figure 5: Participating Hosts per Day

DESCHALL Total Keys
18000 T T T T T T T T T T T T T
16000 -
14000
12000 -
10000
8000
6000
4000
2000

0 1 " 1 L 1 L 1 L 1 L 1 L
Marl5 Mar29 Aprl2 Apr26 Mayl0May24 Jun07 Jun2l
Day (to Midnight, Jun17)

Figure 6: Total Keys Searched

4 Conclusions
A number of conclusions can be drawn from DESCHALL:
1. Small key cryptosystems do not provide adequate security against any but the most trivial of attacks.

2. Whereas previous attacks against “live targets”—cryptosystems enjoying “real” use—required the at-
tacker to be relatively well-funded, the kind of power necessary to attack real targets is becoming
available to those who are not well-funded, but dedicated enough to make an investment of their time.

3. The potential for performing very large computations without the use of expensive, dedicated hardware,
or supercomputers can be seen. Over 7.2 quintillion (10'®) instructions were executed. Succinctly,
massive Internet computing power is here.

5 Future Directions

Although DESCHALL was hardly the first distributed Internet computing project, we believe it was the
largest such project to date, demonstrating how large amounts of Internet-accessible computing resources
can be mobilized relatively easily. It is likely that this form of computing will become more commonplace than
it is today, as more people become involved on a regular basis. Some other large-scale distributed computing
projects are now underway, including RSA’s 64-bit RC5 Challenge [5, 2], RSA’s “DES Challenge II” [6, 1],
The RSA Factoring Challenge [7], and The Great Internet Mersenne Prime Search [12].

While using this type of effort to do a brute force attack on a 64-bit key would be difficult today, it will
certainly be possible in the not so distant future, as more people become involved in these efforts, and as CPU
speeds increase according to Moore’s Law. At the same time, attacks on smaller key lengths will become
easier and easier. Although current distributed projects, like DESCHALL, have not been a direct threat to
computer security (i.e., we didn’t decipher actual, sensitive data), there is no reason that a DESCHALL-type
project could not be assembled by the “underworld” of computer crackers for their own use.

It is our hope that those responsible for deployment and management of cryptosystems take heed to the
warnings here, and demand strong cryptography with large keys.

6 Acknowledgments

The authors would like to thank RSA Data Security Inc for hosting the Secret Key Challenge, Rocke Verser
for starting the DESCHALL project, Karl J. Runge for the excellent statistical data, Darrell Kindred for
the tremendous bitslice clients, and everyone involved with DESCHALL and competing efforts for keeping
things interesting and fun.

References

[1] Adam L. Beberg, et al. Project Monarch.
http://www.distributed.net/des/

[2] Adam L. Beberg, et al. Project Bovine.
http://www.distributed.net/rc5/

[3] Eli Biham. A Fast New DES Implementation in Software. CS 0891, Fast Software Encryption 4, 1997.
http://www.cs.technion.ac.il/users/biham/cgi-binw/tr-get.cgi/1997/CS/CS0891.ps.gz

[4] Germano Caronni and Matt Robshaw. How Exhausting is Exhaustive Search? RSA Laboratories’ Cryp-
toBytes, Vol. 2, No. 3, pages 1-6.

[5] RSA Data Security. RSA Laboratories Secret-Key Challenge.
http://www.rsa.com/rsalabs/97challenge/

[6] RSA Data Security. RSA Laboratories DES Challenge II.
http://www.rsa.com/rsalabs/des2/

[7] RSA Data Security. RSA Factoring Challenge.
http://www.rsa.com/rsalabs/html/factoring.html

[8] Rocke Verser. DESCHALL Project Home Page.
http://www.frii.com/"rcv/deschall.htm

[9] Rocke Verser. Email to Matt Curtin. January 17, 1998.

[10] Michael J. Wiener. “Efficient DES Key Search”, presented at the Rump session of Crypto ’93. Reprinted
in Practical Cryptography for Data Internetworks, W. Stallings, editor, IEEE Computer Society Press,
pp- 31-79 (1996).

[11] Michael J. Wiener. Efficient DES Key Search—An Update. RSA Laboratories’ CryptoBytes, Vol. 3,
No. 2, pages 6-8.

[12] George Woltman. Great Internet Mersenne Prime Search.
http://www.mersenne.org/

